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Abstract

NASA and the US Geological Survey (USGS) are generat-
ing image maps of the entire Earth using Landsat 5 Thematic
Mapper (TM) and Landsat 7 (L7) Enhanced Thematic Map-
per Plus (ETM+) sensor data from the period of 2004 through
2007. The map is comprised of thousands of scene locations
and, for each location, there are tens of different images of
varying quality to chose from. Constraints and preferenceson
map quality make it desirable to develop an automated solu-
tion to the map generation problem. This paper formulates a
Global Map Generator problem as aConstraint Optimization
Problem(GMG-COP) and describes an approach to solving
it using local search. The paper also describes the integra-
tion of a GMG solver into a user interface for visualizing and
comparing solutions.

Introduction and Motivation
The NASA Land-Cover and Land-Use Change (LCLUC)
Program is partnering with the USGS Earth Resources and
Observation Science (EROS) Data Center to produce a high
resolution mosaic map of the Earth. The map will consist of
a data set of high quality images of the Earth’s continental
landmass using Landsat 5 (L5) Thematic Mapper (TM) and
Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+)
sensor data from the mid-decadal period of 2004 through
2007. This project is known as theGlobal Land Survey, or
GLS-2005.

The end-product will be composed of roughly 9500
Worldwide Reference System 2 (WRS-2)1 Landsat scene
locations for which there are often tens of images available
to select from. Eventually, over 300,000 images must be
evaluated and down-selected to create the final survey data
set. The resulting data map will be distributed to the pub-
lic at no charge through a USGS website. In addition to
providing benefits to researchers in the Earth sciences, it
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1L5 and L7 follow the WRS-2 coordinate system for indexing
locations on the Earth where data is acquired. WRS-2 indexesa
location via a set of paths and rows, with a 16-day repeat cycle. L5
follows the WRS-2 system with a temporal offset of 8 days relative
to L7. The WRS-2 indexes orbits (paths) and scene centers (rows)
into a global grid system (daytime and night time) of 233 paths by
248 rows. We refer to each path, row element as ascene location.

will likely become the next generation backdrop for Google-
Earth (which currently uses the GeoCover-2000 data set).

A collection of diverse preference criteria defines a high
quality image map. First, a good map will typically consist
of the best (most cloud-free) image data available per scene.
Second, each image is associated with a Normalized Dif-
ference Vegetation Index (NDVI) value, which is an historic
metric of the average health and density of vegetation within
that scene on the date of the image acquisition. For Earth
Science applications, images with high NDVI are typically
preferred. Third, to be usable for regional scientific studies,
it is preferable to choose image data that are seasonally con-
sistent with neighboring scenes. Fourth, to accommodate
land-cover/land-use change analysis, consideration mustbe
given to the seasonality of previous survey data sets. Finally,
because of a malfunction in the image scanner on L7 since
2003, ETM+ produces imagery that has coverage discon-
tinuities such that an individual image covers only 78% of
the land area. To compensate, two images of the same scene
taken on different days are combined to produce a compos-
ite image that partially or fully closes the gaps. Pairs of im-
ages of a common scene must therefore be chosen to maxi-
mize coverage (minimize gap), which means the two scenes
should be mutually out of phase. Each image is assigned a
“gap–phase statistic”, or GPS, which is an absolute measure
of the geometric registration of the image scan line with re-
spect to the scene center point. Such GPS values are used to
compute the area coverage of composite images.

The size of the space of global image maps, as well as
the number of criteria for quality, make it desirable to auto-
mate the production of solutions to the problem. This paper
presents a formulation of the map generation problem, and
describes an approach to solving the problem using local
search. Section 2 describes the problem in more technical
detail. Section 3 describes a local search approach to solving
the problem. Section 4 discusses the user interface, Landsat
Scene Selector Interface (LASSI) into which the solver is
integrated.

Constraint Optimization Problem
Global Map Generation (GMG) can be viewed as aCon-
straint Optimization Problem(GMG-COP) (Larrosa &
Dechter 2003), with a set of variablesV = {vi,j} indexed
by WRS-2 path and row numberi, j. Each variablevi,j



represents a scene location, and is associated with ado-
main Di,j = {di,j,1, . . . , di,j,m}, where eachdi,j,k rep-
resents a TM or ETM+ image taken of the corresponding
scene. There are binary links with the 4 neighboring scenes,
designatednorth(vi,j−1), east(vi−1,j), south(vi,j+1), and
west(vi+1,j ).

A solution s to the GMG COP is a set of assignments
s = {vi,j ← 〈di,j,k, di,j,l〉}. The need for a pair of images
arises from the L7 ETM+ gap anomaly. One partial image is
called thebase; the other is called thefill . If the base is a TM
image from L5, where there are no missing image data, we
setdi,j,l = di,j,k by convention. For an arbitrary solutions,
we writebs(vi,j), fs(vi,j) for the base and fill values for the
scenevi,j assigned bys.

The GMG problem is a multiobjective optimization prob-
lem, in which a set of potentially competing preference cri-
teria are used to evaluate and compare solutions. The pref-
erence criteria are the following:

1. Single image criteria:

• Minimize cloud cover;
• Maximize NDVI value;
• Seasonality with previous data sets;
• Relative preference for acquiring L7 versus L5 images.
• Reward for acquisition dates centered in study period

(2005 or 2006 versus the fringe years 2004 or 2007)

2. ETM+ composite criteria:

• Minimize gaps in data that remain from compositing
image pairs;
• Minimize the difference in the days the composited im-

ages were acquired.

3. Criteria relating pairs of adjacent images:

• Minimize the difference in the days the images were
acquired;
• Minimize the difference between the days in the year

(ignoring the year) the images were acquired.
• Prefer adjacent images acquired from a common sensor

(sensor homogeneity) i.e. both TM or both ETM+.

Each candidate image is represented as a vector of “meta-
data” comprised of the following text fields: the WRS-2
scene path and row numbers, the sensor that acquired the
image (TM or ETM+), the acquisition date, the cloud cover
assessment, the NDVI metric, and a GPS value used for eval-
uating the scene area coverage that results from compositing
two images. In addition, a preference date is given. This
date is to be used in future work to direct the solver toward
solutions with minimum perturbations from these preferred
dates.

Each meta-data element is associated with a function that
is used to evaluate solution quality. We normalize by con-
sideringmeritvalues in the range[0, 1] where0 is worst and
1 is best. This way the objective function is a maximiza-
tion and always positive. The quality of an individual im-
age can be depicted in terms of two functions, related to the
NDVI merit value, and to cloud cover:ndvi : D → [0, 1],
andacca : D → [0, 1]. Second, there are two functions

associated with measuring the time difference between the
acquisition of neighboring pairs of images:Absolute Day
Difference, date∆ : D × D → [0, 1] is the number of
days between image acquisition, andDay of Year Difference,
doy∆ : D × D → [0, 1] is the gap in days (ignoring the
year in which it was acquired). The latter function is used to
reward solutions that assign images that are seasonally simi-
lar, regardless of year, whereas the former rewards solutions
with pairs of images taken in the same year. Third, the func-
tion Area Coverage, cover : D×D → [0, 1] assigns a value
that indicates goodness of fit between a base and fill image
used in a composite. Finally, to express relative preferences
for TM or ETM+ images, the functionIsL5 : D → {0, 1},
IsL7 : D → {0, 1} assign 1 to images acquired by TM
(respectively, ETM+), and 0 otherwise.

The WRS organization of scene locations into path and
row induces a grid or lattice structure to the GMG-COP con-
straints. Because of the symmetry of adjacency, it suffices
to represent this notion in terms of the functionsnorth :
V → V andeast : V → V , which return the variable cor-
responding to the scene that is north (east) of the designated
variable.

The set of solutions can be ordered in terms of the objec-
tive of maximizing individual scene quality while maximiz-
ing phase difference between bases and fills and minimizing
the temporal differences between (the bases of ) adjacent im-
ages. Given an arbitrary solutions, its score is the value of
the following weighted summation:

f(s) = Σi,j

w1 ∗ ndvi(bs(vi,j))

+ w2 ∗ acca(bs(vi,j)))

+ w3 ∗ ndvi(fs(vi,j))

+ w4 ∗ acca(fs(vi,j))

+ w5 ∗ date∆(bs(vi,j), fs(vi,j))

+ w6 ∗ cover(bs(vi,j), fs(vi,j))

+ w7 ∗ date∆(bs(vi,j), bs(north(vi,j)))

+ w8 ∗ date∆(bs(vi,j), bs(east(vi,j)))

+ w9 ∗ doy∆(bs(vi,j), bs(north(vi,j)))

+ w10 ∗ doy∆(bs(vi,j), bs(east(vi,j)))

+ w11 ∗ IsL5(bs(vi,j)

+ w12 ∗ IsL7(bs(vi,j)

w1 andw2 govern the importance of the quality of individual
base images.w3 −w6 discount the value of an image based
on the quality of the fill, and on the goodness of fit between
base and fill. For L5 images, where the base and fill are the
same, the discount is the same as(w2 + w4)acca(bs(vi,j)),
etc. Notice that since we assume that the temporal and spa-
tial match between an image and itself is perfect, L5 images
are not discounted on these criteria.w7 − w10 deal with
compatibility of bases with adjacent images (we ignore the
compatibilities of fill), andw11 andw12 allow for an ab-
solute preference for L5 or L7 images to be expressed. An
optimal solutions∗ to this GMG problem is one that receives
the maximum score based on this function.



Local Search Solution
Computationally, the problem solved by GMG is similar
in structure to the problem of assigning frequencies to ra-
dio transmitters (Cabonet al. 1999), and other generaliza-
tions of the map coloring problem. There are two complete
general constraint-based methods of solving such problems:
through search, as with Branch and Bound algorithms; and
through variable elimination, e.g. using Bucket Elimination
(Dechter 2003). The worst case time and space complexity
of the latter is tightly bounded by a parameter of the problem
called theinduced width, which arises out of an ordering of
the variables. Specifically, complexity of Bucket Elimina-
tion is O(n ∗ dw+1), wheren is the number of variables,d
is the size of the largest domain, andw is the induced width.
In practice, the primary drawback in performance is space;
only problems with small induced width can be solved.

Given a set of variables and associated constraints, find-
ing the ordering of the variables with aminimum induced
width is an NP-hard problem. Although to our knowledge no
proof exists, it appears that the induced width of a constraint
graph arranged as a square grid of sizen× n is n. This lin-
ear growth rate imposes a practical limitation on the size of
problems solved in a reasonable time by Bucket Elimination
to roughlyn = 30, too small for the GMG problem (Larrosa
2007). Hybrid approaches that combine BE with Branch and
Bound have demonstrated an improvement in performance
over pure BE for problems with a grid structure (Larrosa,
Morancho, & Niso 2005). Although these results justify the
future application of these methods to the GMG problem, in
this effort we did not attempt to solve the problem using a
complete method, but rather chose local search.

Reasons for adopting a local search method to solving
constraint optimization problems are well documented: they
include

1. Anytime performance:On average, local search behaves
well in practice, yielding low-order polynomial running
times (Aarts & Lenstra 1997). Because the criteria space
is high-dimensional, it is difficulta priori to quantitatively
characterize globally preferred solutions. Consequently,
our customers were interested in a system that could ex-
amine large parts of the search space quickly to determine
weight settings that produced adequate results.

2. Flexibility and ease of implementation:Our customers re-
quired us to build, and demonstrate the advantages of, au-
tomated solutions in a short period of time (2 months).
Local search can be easily implemented.

3. Ability to solve large problems:As optimization problems
go, the GMG-COP can be considered large. Local search
has been shown to be effective on large problems.

Local search defines a class of approximation algorithms
that can find near-optimal solutions within reasonable run-
ning times. Given the pair(S, f), whereS is the set of so-
lutions andf is the objective function, letS∗ be the set of
best solutions (i.e., the ones with the highest score according
to f ), andf∗ be the best score. Members ofS∗ are called
global optima. Local search iteratively searches through the
setS to find a local optimalsolution, a solution for which

no better can be found. Local optima need not be in general
members ofS∗.

To conduct the search, local search relies on the notion
of a neighborhood function, N : S → S, a function that
takes one solution (called thecurrent solution) and returns a
new solution that differs from the current in some small way.
To be effective, a neighborhood function should be simple;
it should not require a lot of time to compute. For GMG-
COP, the neighborhood function randomly selects a cell and
replaces the selected image with a new one. A neighborhood
function isexactif every local optima it finds as the result of
search is a global optima. The neighborhood function used
to solve GMG-COP is not exact.

Designing a local search algorithm is based on deciding
three components: how an initial solution, orseedis gener-
ated, how to select a neighboring solution, and when to ter-
minate search. For the GMG solver described in this paper,
we took a simple approach to deciding these issues, reason-
ing that complexity should be introduced only as needed,
i.e., only as warranted by inferior performance of simpler
approaches, as expressed by the customers.

First, a good design for a seed generator is one that intu-
itively starts in a good locationin the search space. A good
location is one that is relatively close to optimal solutions,
where close is measured by the length of the path from it
to an optimal solution using the neighborhood function. For
the GMG-COP, we chose a seed that picks the highest in-
dividual quality image for each cell, ignoring preferences
related to adjacency. This seed is easy to generate (there
is no need to consider adjacency constraints) and should be
a good quality solution because it favors cloud-free images
with high NDVI value.

Choosing a neighboring solution requires, first, choosing
which cell to change. The simplest approach is to pick the
cell at random. Since local search is “memoryless”, in the
sense that it does not keep track of where it’s been previ-
ously, it may not be able in general to avoid examining the
same solution multiple times. To avoid this, sometimes al-
gorithms have “taboo” lists, lists of variables recently cho-
sen to change. Variables are put on the list after chosen and
eventually taken off after some number of iterations. Vari-
ables on the list can’t be selected on a given iteration. In
our implementation we applied an extreme case of “taboo”
list: once a scene is selected for examination, it is immedi-
ately placed on the taboo list to allow for all other scenes to
be examined in the current iteration (the ordering of scene
selection is random).

Given a selected cell, there are also a number of ways
to select among the set of neighboring solutions based on
changes made to that cell. Some are deterministic; i.e.,
given the same decision to make, the algorithm will make the
same choice each time. Others are non-deterministic. Algo-
rithms such as simulated annealing and genetic algorithms
are non-deterministic. Initially, we opted for a deterministic
approach, of which there are two kinds: first improvement
or best improvement. First improvement examines neigh-
bors, in a local search sense, until one is found that is better
than the current solution; that one becomes the new current
solution. Best improvement examines all the neighbors, and



picks the one that improves upon the current solution the
most. Either of these generates agreedyapproach, one that
always chooses an improving solution. A variation of best
improvement is where a neighbor with the best score is cho-
sen, even if the score is worse than the score of the current
solution. This approach allows for the possibility that a glob-
ally optimal solution may not be on the “greedy path” from
an initial seed solution.

Finally, choosing a termination condition requires decid-
ing how many solutions will be generated before the algo-
rithm halts. The simplest approach will be to define a ter-
mination condition that sayshalt when you reach the first
locally optimal solution or after a fixed number of solu-
tions,MAX , have been generated, whichever comes first.
A slightly more sophisticated version of thissimple local
searchis calledmulti-start: here, for some fixed number of
runs, we start with different initial (seed) solutions. Such
initial solutions can be fully randomly generated (our imple-
mentation), semi-randomly generated, or deterministically
generated. An example of deterministically generated initial
solutions employed here is to assign to each scene the best
self-quality image/pair. Alternatively, the local optimum of
one run of simple local search can be used as the initial so-
lution for the next run.

Testing the GMG-COP occurred in two stages. First, we
compared different variations in multi-start local searchto
determine the best performing algorithm. Four variations
were tested, based on two variations of two criteria: the ini-
tial solution and the choice of neighbor. The initial solutions
tried were a randomly generated solution and the solution
consisting of the set of images that scored highest individ-
ually (i.e. with respect to cloud cover, NDVI, and base–fill
quality). The choice of neighbor was either done on a “first
improvement” basis, i.e., the first alternative that improved
the overall score, or “best improvement” basis, i.e., of all
the images, selecting the one that most improved the score.
The results indicate that the best strategy for finding high
quality solutions is through exploration: with a random ini-
tial solution, and a ”best improvement” neighbor selection,
progress was quickly made towards solutions with higher
quality than those found by the other approaches. We spec-
ulate that a random seed works better than one based on in-
dividual scene quality because the latter forced the search
into local optimum that was not globally optimal.

In the other stage, we were interested in the extent of the
improvement offered by an automated solution over current
practice, which consists of manually generating solutions.
Towards this end, tests were conducted by the customers at
USGS and the Landsat mission using the GeoCover-2000
(GC2K) data set. The results showed that GMG, imple-
mented as a simple algorithm then which we later improved
significantly, produced a solution that was 23% better qual-
ity than the manually generated solution, based on the ob-
jective function scores. The customers viewed this result as
significant enough to warrant integration and deployment of
the solver.

On the complete GLS-2005 data set, the GMG solver con-
verges to a solution in about a minute. A more detailed dis-
cussion of experiments during GMG development is found

in (Khatibet al. 2007).

Landsat Scene Selection Interface (LASSI)
As noted above, the GMG solver arrives at its solution based
on input consisting of a metadata representation of an im-
age. Metadata furnish a low-fidelity, quantified assessment
of several image attributes, such as cloud contamination
and vegetation maturity (NDVI). Each metadata metric is
a global average assessment over the entire image area, but
each metric is subject to its own systematic errors (detailed
discussion of which are beyond the scope of this paper). Ob-
viously, a GMG solution is only as good as the metadata it
uses to select the corresponding image, so noisy input can
translate into a less than ideal solution. To address the real-
ity of these potential sources of sub-optimal solutions, GMG
is embedded into a graphical user interface and visualization
tool known as ”LASSI” (Large Area Scene Selection Inter-
face). LASSI allows users to:
• Adjust objective function criteria weights prior to launch-

ing the GMG solver.

• Visually assess mosaic thumbnail image renderings of the
GMG solutions.

• Examine quality of solutions with respect to each objec-
tive function criterion.

• Remotely access and view browse imagery for each WRS
cell from the USGS Landsat database.
After a solution has been produced by GMG, the user may

view maps representing the quality of the solution. Each
map portrays a metadata attribute in color gradients on a
WRS-2 map grid. These maps enable the user to assess the
quality of the solution in various dimensions. Figure 1 is
one such view, in this instance, of the NDVI metric. Similar
metadata maps are available for
• Sensor - Discriminates Landsat 5 TM versus Landsat 7

ETM+ images in the solution set.

• Day of Year - Relative time of year of base acquisitions.

• Year - Acquisition year.

• ACCA - Cloud assessment, measure of cloud pixels (do-
main 0 to 10 %).

• NDVI - NDVI, normalized with respect to peak NDVI by
WRS scene.

• Raw NDVI - Non-normalized (raw) NDVI.

• Preference Year - Distinguishes whether the chosen image
was acquired within the middle two years (2005 or 2006)
or the ”fringe years” (2004 or 2007).

• Preferred Day of Year - Depicts the seasonal temporal
difference between acquisition dates of the chosen image
with respect to the date of the corresponding WRS scene
in the GeoCover-2000 data set. (Minimizing this time dif-
ference improves the utility of the two data sets for trend-
ing analysis.)

• Northern Neighbor - Depicts the temporal difference be-
tween neighboring ”along-track” scenes (north to south).
Minimizing this difference reduces potential discontinu-
ities in the resulting end-product map.



• Eastern Neighbor - Depicts the temporal difference be-
tween neighboring ”adjacent-path” scenes (east to west).

Other matadata views depict the quality of images chosen
to fill gaps in the L7 ETM+ images. These include qual-
ity of the ACCA fill, the cloud assessment of gap fill im-
ages; coverage, i.e., the relative success of gap-filling (100
% coverage is desired for each base-fill image pair); NDVI
difference, i.e., for each base-fill image pair, the relative dif-
ference in seasonality between these images (If the differ-
ence is too great, the pair may produce a composited image
with undesirable ”artifacts”); and temporal difference, i.e.,
for each base-fill image pair, the relative difference in ac-
quisition dates between these images (if the difference is too
great, the pair may result in artifacts similar to NDVI differ-
ences, in addition to differences in sun angle).

The next visualization layer of the user interface features
a thumbnail image mosaic map. By double-clicking within
any metadata map, LASSI produces a mosaic map of thumb-
nail browse images. From here the user may view a full-
screen image browse image of any thumbnail image. This
is especially useful for revealing cloud contaminated im-
ages that may not be accurately represented in the metadata
ACCA attribute. This mosaic map display also enables the
user to view the chosen ETM+ base and fill images for side
by side comparison. A small window in this display plots
the monthly NDVI of this scene with a markers showing the
relative acquisition time of year of the base and fill images
(where applicable). Finally, the display includes a horizon-
tally scrolling list of all candidate images of any selected
WRS grid cell. From this list, the user may manually over-
ride the original GMG selection by choosing alternate ac-
quisitions for the base and/or the fill images. Figure 2 shows
a screen capture of the thumbnail image mosaic map.

Map-building using GMG/LASSI is an iterative process.
The user initializes the objective function weight parame-
ters and then invokes GMG to produce a strawman solution.
After examining the metadata maps, the user tweaks these
weights if necessary to compromize in some dimensions to
improve others. In the end, the user will view the solution’s
thumbnail mosaic map and manually fine-tune it if necessary
to eliminate imagery with popcorn clouds, contrails, snow,
or other contaminents that may not have been accounted for
in the metadata.

For the 2005 global map construction, the project has
elected to pursue the problem independently for each con-
tinental landmass. This way the GMG objective function
weights may be tailored for each global region. The 2005
scene selection of North America using GMG/LASSI is
complete. The selection of Africa imagery is progressing.
The entire global data set for the 2005 data set is planned for
completion by mid-2008.

Current Status and Future Work
Based on a successful application of the GMG on the mid-
decadal global Landsat data set, the GMG will then be used
for additional data set projects as well. One such mapping
application has to do with the USGS goal to create a state
mosaic for all 50 states in the US. The use of GMG has the

potential of automating a large part of that effort. Due to
the scanner failure on L7, GMG will greatly reduce the la-
bor necessary to exploit the Landsat data archive; and, as
the L7 mission is expected to go to 2012, the benefit of the
GMG cannot be overstated, due to its value in reducing the
time spent examining large numbers of candidate solutions.
USGS and NASA are already planning for the next Decadal
survey, GLS-2010. That plan includes leveraging on the suc-
cess of LASSI and GMG.

The objective function criteria and aspects of the interface
occasionally undergo refinements based on evolving cus-
tomer requirements. For example, a criterion was recently
added that considers whether a scene is predominantly agri-
cultural. If so, L5 imagery is preferred because the artifacts
resulting from L7 image pair compositing are more notice-
able and problematic when gaps are filled through homoge-
neous farmland. Another recent change allows for more hu-
man intervention into the solution generated. For example,
as the result of a recent update, if a user manually selects a
L7 base-fill image pair, then the solver is not allowed to alter
that selection, or reverse the base-fill images.

The global map generation problem provides an ideal do-
main for testing and evaluating constraint-based optimiza-
tion solvers. Furthermore, the GMG solver is of significant
potential benefit to the Earth Science research community,
allowing scientists access to improved automated tools to
study the Earth’s changing eco-system. There are future
plans to apply the approach described in this paper to gener-
ating complete moon maps using Clementine image data.
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Figure 1: LASSI screen capture, showing quality of GMG-generated solution with respect to a single attribute, NDVI. Lighter
color signifies better quality image with respect to attribute.

Figure 2: Screen shot of thumbnail images of GMG solution. For a selected thumbnail, the LASSI interface shows images not
selected at the bottom of screen. User may override GMG selected image by choosing one of the alternatives.


